- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
Mehr Speicher für mehr Daten

Autonomes Fahren

Mehr Speicher für mehr Daten

Bild: ©carloscastilla/istockphoto.com

Künstliche Intelligenz spielt bei der Zukunft der Mobilität eine große Rolle, da Fahrzeuge immer abhängiger von immer mehr Daten werden. Dies erfordert neue Speicherlösungen, die es ermöglichen, Daten nahtlos zwischen unterschiedlichen Speicherarten zu verschieben.


Der technologische Fortschritt in der Automobilindustrie lässt die Vision vom vernetzten und selbstfahrenden Auto greifbar erscheinen. Zwar wird es noch einige Jahre dauern, bis vollautonome Autos in Masse vom Band laufen, doch bereits jetzt steigt die Anzahl teilautonomer Fahrzeuge auf dem Markt. Sie sind mit On-Board-Technologien ausgestattet, wie etwa fahrerunterstützten Systemen (ADAS), Infotainment-Systemen (IS) oder intelligenten Sensoren, die dem vernetzten Fahrzeug seine mitdenkenden Fähigkeiten und Funktionen verleihen. Die Grundlage dafür bilden Daten, wodurch die Datenmenge immer weiter wächst und ein komplexes Netz aus Plattformen und Algorithmen entsteht. Automobilhersteller müssen aber auch die Speicherung der Datenmengen schultern, die im Zuge der Entwicklung von KI-Technologien anfallen. Hunderte von Petabytes werden bei jedem Entwicklungstest erzeugt und ein großer Teil dieser Daten muss über lange Zeiträume aufbewahrt werden.

Große Datenmengen

Noch sind die Technologien nicht vollständig autonom und funktionieren nur unter bestimmten Rahmenbedingungen. Das kann im Alltag zu Problemen führen: Zum Beispiel wenn die Verkehrsdichte steigt oder Szenarien eintreten, die eine massive Datenübertragung zwischen dem fahrzeugseitigen System und dem zentralen Computersystem erfordern. Aktuell kann die Lösung solcher Probleme zu einer Überlastung mit Daten im stark beanspruchten Netzwerk und zu extremer Rechenkomplexität im Bordsystem führen. Das Marktforschungsunternehmen Gartner prognostiziert, dass das durchschnittliche vernetzte Fahrzeug bis 2020 jährlich über 280 Petabyte an Daten produzieren wird – pro Tag müssten also mindestens 4 Terabyte verarbeitet werden. Sie stammen von der On-Board-Hardware, zu der beispielsweise Kameras gehören, die 20 bis 60MB Datenvolumen pro Sekunde erzeugen oder LIDAR-Systeme, Light Detection and Ranging, für die radarbasierte Messung von Abständen und Geschwindigkeiten mit zehn bis 20 MB pro Sekunde. Sonarradare und GPS bringen es jeweils auf zehn bis 100kB pro Sekunde. Selbstfahrende Fahrzeuge werden durch Data-Intelligence-Lösungen gesteuert. Entscheidend ist dabei, die richtigen Daten zu speichern und in intelligente Systeme, Analyse-Lösungen, Entwicklungsabläufe und andere Anwendungen zu übernehmen.

Unterschiedliche Fahrzeugarten

In den nächsten Jahren werden unterschiedliche Arten von vernetzten Fahrzeugen mit individuellen Anforderungen auf den Markt kommen: Während etwa unternehmenseigene Flottenfahrzeuge über eine eigene Speicherarchitektur für die Verwaltung ihrer Daten verfügen, konzentrieren sich die Hersteller bei Mittelklassefahrzeugen für Verbraucher eher auf Infotainment-Systeme, die eine ganz andere Architektur erfordern. Eine entsprechende Speicherlösung muss in diesem Zusammenhang einen reibungslosen Übergang der Daten aus allen Lebensphasen von der ersten Erfassung im Fahrzeug bis hin zur langfristigen Speicherung ermöglichen. Diese Infrastruktur muss einen aktiven Zugriff und die Suche in allen Daten erlauben, große Langlebigkeit aufweisen und mit Werkzeugen ausgestattet sein, die Compliance-Vorgaben wie beispielsweise die Übereinstimmung mit den Datenschutzgesetzen gewährleisten. Neben einem leistungsstarken Front-End auf Basis von SSD-Speichern (Solid State Drive) oder Festplatten ist ein kostengünstiger und skalierbarer Speicher für große Datenmengen – vorzugsweise Tape oder objektbasierter Speicher – ebenso wichtig. Eine erfolgreichen Storage-Architektur zeichnet sich letztlich dadurch aus, dass den Datennutzern auf einfachem Wege die benötigten Speicher- und Verarbeitungsressourcen für ihre spezifischen Arbeitsabläufe in jeder Phase des Datenzyklus zur Verfügung stehen. Eine Kombination aus leistungsstarker Festplatte und Tape-Archivierung mit einem gemeinsamen Verwaltungspunkt für viel Speicherplatz kann in dieser Situation die Lösung sein.

Seiten: 1 2Auf einer Seite lesen

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Machine Learning einfach gemacht

Seit einigen Jahren schon werden die Fantasien der Ingenieure und Anlagenbauer beflügelt durch die Möglichkeiten von KI- und Machine-Learning-Algorithmen. Klingt zwar zunächst sehr kompliziert, bietet aber konkrete Vorteile für die smarte Fabrik. Maschinen und Anlagen bzw. Produktionsprozesse erzeugen kontinuierlich Daten. Erfolgreich werden zukünftig Unternehmen sein, denen es gelingt, Mehrwert aus diesen Daten zu generieren.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.