- Anzeige -
- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 4min
Autonomes Fahren auch bei schlechten Winterbedingungen
Dank der Synchronisation unterschiedlicher Sensorprinzipien sowie einem hochentwickelten Bordcomputer mit einer selbstfahrenden Codebasis, ist autonomes Fahren auch bei schlechten Winterwetterbedingungen möglich. Mit an Bord des Autonomoose Projekts sind acht Kameras von Ximea.
Bild 1 | Der Lincoln-MKZ-Hybrid mit seiner vollständigen Sensorausstattung durchstreift die verschneiten Straßen von Ontario 
und zeichnet Schlechtwetterdaten auf, um fahrerlose Fahrzeuge zu befähigen, diese Bedingungen schließlich zu meistern.
Bild 1 | Der Lincoln-MKZ-Hybrid mit seiner vollständigen Sensorausstattung durchstreift die verschneiten Straßen von Ontario und zeichnet Schlechtwetterdaten auf, um fahrerlose Fahrzeuge zu befähigen, diese Bedingungen schließlich zu meistern.Bild: Ximea GmbH

Die Forscher des University of Waterloo – Centre for Automotive Research (WatCAR) modifizierten hierfür einen Lincoln MKZ Hybrid für den autonomen Drive-by-Wire-Betrieb. Die Forschungsplattform Autonomoose beinhaltet eine umfangreiche Anzahl an Radar-, Sonar-, Lidar-, Inertial- und Vision-Sensoren sowie leistungsstarke Emedded-PCs zum Betrieb des vollständig autonomen Antriebssystems und der integrierter Software zur Sensorfusion, Bahnplanung und Bewegungssteuerung. Die eingesetzten Sensoren umfassen acht Kameras der MQ013CG-E2 Serie von Ximea, einen Lidar-Scanner, ein GPS/Inertialsystem und zwei zusätzliche IMUs als Teil des Fahrerassistenzsystems (ADAS). Die Kameras zeichnen 10 Bilder pro Sekunde auf und versieht diese mit einem Zeitstempel. Der Lidar ist mit dem GPS-PPS-Signal und den NMEA-Nachrichten zeitsynchronisiert. Jede Lidar-Punktwolke enthält einen vollständigen 360°-Bogen der Lidar-Strahlen. Der Bordcomputer empfängt die GPS-PPS-Signale und NMEA-Nachrichten, welche die letzte Position, Geschwindigkeit, Orientierung sowie die Standardabweichungen enthalten. Basierend auf dem internationalen SAE-Standard für automatisiertes Fahren (SAE J3016, eine Skala von 0-5) wurde das Fahrzeug zunächst auf Stufe 2 gerüstet. Während der Dauer des Forschungsprogramms hat das Team die Automatisierung auf Stufe 3 und schließlich auf Stufe 4 (die im Jahr 2018 erreicht wurde) vorangetrieben.

Bild 2 | Die Machine-Learning-Algorithmen müssen auch bei schlechten Witterungsbedingungen und Kontrasten zuverlässige Ergebnisse liefern.
Bild 2 | Die Machine-Learning-Algorithmen müssen auch bei schlechten Witterungsbedingungen und Kontrasten zuverlässige Ergebnisse liefern.Bild: Ximea GmbH

Verlässliche Daten auch im Winter

Der Lincoln MKZ-Hybrid mit seiner vollständigen Sensorausstattung durchstreift die verschneiten Straßen von Ontario und zeichnet Schlechtwetterdaten auf, um fahrerlose Fahrzeuge zu befähigen, diese Bedingungen schließlich zu meistern. Systeme, deren Daten bei gutem Wetter generiert wurden, um Fahralgorithmen zu errechnen, können auf Grund unterschiedlicher visueller Bedingungen bei verschneiten Straßen, mit kontrastarmen weißem Hintergrund, verwirrt werden und falsche Daten liefern. Steven Waslander, ein außerordentlicher Professor am Institut für Luft- und Raumfahrtforschung der Universität Toronto in der Fakultät für angewandte Wissenschaften und Ingenieurwesen, und Krzysztof Czarnecki, ein Professor an der Universität Waterloo, leiten das Team, dass den kanadischen Datensatz über ungünstige Fahrbedingungen zusammenstellt. Eine Zusammenarbeit mit Scale AI hilft ihnen bei der Kategorisierung der Daten. „Daten sind ein kritischer Engpass in der aktuellen Machine-Learning-Forschung“, sagte Alexandr Wang, CEO von Scale AI. „Ohne zuverlässige, qualitativ hochwertige Daten, die die Realität des Fahrens im Winter erfassen, wird es einfach nicht möglich sein, selbstfahrende Systeme zu bauen, die in diesen Umgebungen sicher funktionieren.“ Das Projekt hat die Daten, die Dokumentation und die Support-Tools im GitHub platziert. Ein frei zugänglicher wissenschaftlicher Artikel über arXiv erklärt den Prozess der Datensammlung. Der Datensatz enthält 7.000 Frames, über die eine Vielzahl von winterlichen Fahrbedingungen gesammelt wurden. Lidar-Frame-Annotationen, die die Grundwahrheit für die Erkennung und Verfolgung von 3D-Objekten darstellen, wurden von Scale AI bereitgestellt. „Schlechtes Wetter ist ein Zustand, der eintreten wird“, so Waslander. „Wir wollen nicht, dass Kanada zehn oder 15 Jahre im Rückstand ist, nur weil die Bedingungen hier oben etwas härter sein können.“

Autor:
Firma: Ximea GmbH
www.ximea.com
- Anzeige -

News

- Anzeige -

Weitere Beiträge

Das könnte Sie auch interessieren

Wie KI in der Krise Wirtschaftsleistung unterstützen kann

Künstliche Intelligenz hat einen großen Einfluss auf die Zeit in der Corona-Krise, aber auch nach der Krise ist sie sehr hilfreich. Claudia Bünte ist Expertin auf dem Gebiet der KI und Professorin für ‚International Business Administration‘ mit Schwerpunkt Marketing an der SRH in Berlin. 2016 gründete sie die Marketingberatung ‚Kaiserscholle – Center of Marketing Excellence‘ und berät Top-Manager in Kernfragen der Markenführung und des Marketings.

mehr lesen

Digitalisierung und künstliche Intelligenz optimieren Prozessanlagen

Digitalisierung und künstliche Intelligenz (KI) eröffnen auch in der Prozessautomatisierung Perspektiven für Einsparungen in allen Phasen des Lebenszyklus einer Anlage. Schon verfügbar ist ein digitales Feldgerät, das Festo Motion Terminal VTEM. Auch Dashboards von Festo visualisieren Anlagenzustände und selbst künstliche Intelligenz ist in der Prozessautomatisierung keine ferne Zukunftsmusik mehr.

mehr lesen

Künstliche Intelligenz gezielt in der Wertschöpfung einsetzen

Die Wettbewerbsfähigkeit deutscher produzierender Unternehmen hängt heute mehr denn je von der Fähig-keit ab, komplexen Herausforderungen wie volatilen Märkten effektiv zu begegnen. Insbesondere im industri-ellen Kontext ergeben sich durch eine stetig wachsende Datenverfügbarkeit sowie verbesserte Analysemög-lichkeiten erhebliche Potenziale: „Artificial Intelligence“ (AI), zu Deutsch „Künstliche Intelligenz“ (KI), ermög-licht die Verarbeitung großer Datenmengen und kann dabei helfen, Prognosen abzuleiten und die Entschei-dungsfindung zu erleichtern. Um diese Potenziale abrufen zu können, müssen Unternehmen befähigt wer-den, Künstliche Intelligenz in der Wertschöpfung gezielt einzusetzen.

mehr lesen

Quantensprung für die künstliche Intelligenz

Quantencomputer werden die künstliche Intelligenz und das Maschinelle Lernen tiefgreifend verändern und völlig neue Anwendungsmöglichkeiten erschließen. In einer Studie erläutern Experten der Fraunhofer-Allianz Big Data und künstliche Intelligenz gemeinsam mit wissenschaftlichen Partnern, wie Quantencomputer Verfahren des Maschinellen Lernens beschleunigen können und welche Potenziale ihr Einsatz in Industrie und Gesellschaft mit sich bringen wird. Die Studie stellt grundlegende Konzepte und Technologien des Quantencomputings vor, analysiert die aktuelle Forschungs- und Kompetenzlandschaft und zeigt Marktpotenziale auf.

mehr lesen

KI-Studie 2020: Das Fremdeln des Top-Managements mit KI

Künstliche Intelligenz ist eine wichtige Technologie, von der sich Unternehmen handfeste Wettbewerbsvorteile versprechen. Das ist das Ergebnis einer aktuellen Studie des IT-Dienstleisters Adesso unter Führungskräften. Konkrete Projekte haben allerdings bislang nur wenige Firmen umgesetzt. Besonders zurückhaltend zeigt sich bei dem Thema das Top-Management.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.