- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: 0min
KI in der Industrie 4.0 braucht den Faktor Mensch

Jun 26, 2019 | Allgemein

Der KI-Einsatz in der Massenproduktion und vor allem auch für die Losgröße 1 wird enorme positive Auswirkungen haben. McKinsey vergleicht KI bereits mit der Einführung der Dampfmaschine im 18. Jahrhundert und prognostiziert, dass bis 2030 rund 70 Prozent der Unternehmen eine KI-Anwendung einsetzen werden. Sie sollen die Produktivität steigern und Instandhaltung planbarer gestalten. Die ethische Dimension von KI bleibt bisher oftmals unterbelichtet. Dabei zeigt sich jedoch, dass KI ohne menschliche Intelligenz (noch) nicht möglich ist.


 (Bild: ©Wenjie Dong/istockphoto.com)

Bild: ©Wenjie Dong/istockphoto.com

Der Branchenverband Bitkom hat zur diesjährigen Hannover Messe 555 Unternehmen mit über 100 Mitarbeitern befragt und festgestellt, dass bisher nur zwölf Prozent der deutschen Industrieunternehmen bereits heute Künstliche Intelligenz (KI) im Zusammenhang mit Industrie 4.0 nutzen. Die Erwartungen an KI sind aber so groß, dass der Einsatz nun wohl exponentiell zunehmen dürfte. Vor allem erwarten die Industrieunternehmen, ihre Produktivität zu steigern, Vorausschauende Wartung und Instandhaltung zu verbessern sowie eine Optimierung ihrer Produktions- und Fertigungsprozesse. Die Befragten gaben zudem an, dass sie 2019 rund fünf Prozent ihres Umsatzes in die Digitalisierung investieren wollen. Die Hoffnungen richten sich auf die Realisierung von Smart Factories, in denen autonome Roboter mit Menschen zusammenarbeiten, dabei niemals müde werden und sogar die Fehler ihrer menschlichen Kollegen rechtzeitig erkennen und für Korrekturen sorgen. Wie im Auto von morgen soll KI in Robotern zusammen mit einer Unzahl von Sensorgen und Aktoren für eine autonome Aktion und Interaktion zwischen Maschinen und zwischen Menschen und Maschinen sorgen. Um dieses Ziel zu erreichen, müssen solche Systeme in Echtzeit große Datenmengen verarbeiten, Muster erkennen, Handlungsoptionen ableiten und umsetzen. Sie müssen also ähnlich wie KI heute schon in Wissenschaft, Medizin, Marketing und selbst für Juristen, zu vorgegebenen oder vorgefundenen oder gerade entstehenden Problemen Lösungen finden. Aber ist das, was in einer Smart Factory mit autonomen und KI-basierten Robotern heute bereits möglich ist, schon künstliche Intelligenz? Oder führt der Begriff in die Irre, wenn lediglich große Datenmengen mit immer leistungsfähigeren Rechnern ausgewertet werden?

Die aktuell verfügbaren KI-Anwendungen sind  trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. (Bild: ©ipopba/istockphoto.com)

Die aktuell verfügbaren KI-Anwendungen sind trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. (Bild: ©ipopba/istockphoto.com)

Was ist künstliche Intelligenz?

Künstliche Intelligenz orientiert sich am menschlichen Intelligenzbegriff und versucht, die Erkenntnis- und Entscheidungsfähigkeit des Menschen zu imitieren. Schon heute gelingt es zumindest, KI-Systeme intelligent erscheinen zu lassen. Sie sind in der Lage, große Datenmengen in kurzer Zeit mit von Menschen geschriebenen Algorithmen auf Muster hin zu analysieren. Algorithmen kommt hierbei eine Schlüsselfunktion zu. Darin sind Anweisungen definiert, um ein Problem systematisch zu lösen. Wie ein Bauplan oder eine Gebrauchsanweisung verfolgt der Algorithmus diesen einen und vorgegebenen Weg und führt zu einem eindeutigen Ergebnis. Um die Leistungsfähigkeit von KI zu steigern, entwickelten Neurowissenschaftler und Informatiker künstliche Neuronale Netze (KNN), die sich am biologischen Vorbild der Vernetzung von Neuronen im Gehirn orientieren. KNN sind in der Lage, sich jederzeit durch neue Informationen, die sie bei Lernprozessen ähnlich wie das Gehirn verarbeiten, neu zu vernetzen oder alte Verbindungen höher oder geringer zu gewichten oder vollständig aufzulösen. Durch die KNN sind auch KI-Algorithmen heute fähig, bei ihrer Anwendung zu ‚lernen‘ – sie können sich also selbständig weiterentwickeln. Dieser Prozess wird als Machine oder Deep Learning bezeichnet. Was der Mensch als Erkenntnis speichert, jederzeit erinnern und wieder anwenden kann, bedeutet bei den Maschinen, dass sie ihren Algorithmus ‚umschreiben‘, um die ihnen gestellten Aufgaben immer besser lösen zu können.

KI macht das, was man ihr sagt

Die aktuell verfügbaren KI-Anwendungen sind trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. Eine KI, die Experten für die Tätigkeit eines Roboters in einer Fertigungslinie programmiert haben, ist nicht in der Lage, in einer anderen Umegbung zu arbeiten. Wissenschaftler bezeichnen diese als schwache KIs – und träumen von starken KIs. Noch ist es nicht gelungen, eine KI zu programmieren, die die intellektuellen Fähigkeiten des Menschen auch nur annähernd simulieren kann. Eine starke KI müsste in der Lage sein, logisch zu denken, Entscheidungen auch tatsächlich wie ein Mensch zu fällen, also abzuwägen z.B. zwischen zwei gleich schlechten Alternativen. Sie müsste sich planvoll neue Wissensgebiete erschließen und sich systematisch selbst anlernen. Vor allem aber müsste sie in natürlicher Sprache selbständig Ideen formulieren können und alle ihre Kompetenzen auch in ein Wertesystem einordnen und einem höheren oder ferneren Ziel unterordnen können. Kurzum: Sie müsste nach ethischen, moralischen und sozialen Kategorien ihr Verhalten und ihre Entscheidungen verantwortungsvoll selbst steuern. Das bedeutet: Ohne den Faktor Mensch wird es bei aller Dynamik der technologischen Entwicklung in der digitalen Transformation auf absehbare Zeit nicht gehen.

Seiten: 1 2 3Auf einer Seite lesen

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

ABB unterstützt betriebliche Optimierung mit Analyse- und KI-Software

Die ABB Ability Genix Industrial Analytics und AI Suite ist eine skalierbare Analyseplattform mit vorgefertigten, benutzerfreundlichen Anwendungen und Services. Damit werden Betriebs-, Engineering- und IT-Daten erfasst, kontextualisiert und in umsetzbare Informationen umgewandelt. So können industrielle Prozesse verbessert und das Management der Anlagen optimiert werden. Darüber hinaus können Geschäftsprozesse sicher und nachhaltig rationalisiert werden.

mehr lesen

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.