- Anzeige -
- Anzeige -
KI in der Industrie 4.0 braucht den Faktor Mensch
Der KI-Einsatz in der Massenproduktion und vor allem auch für die Losgröße 1 wird enorme positive Auswirkungen haben. McKinsey vergleicht KI bereits mit der Einführung der Dampfmaschine im 18. Jahrhundert und prognostiziert, dass bis 2030 rund 70 Prozent der Unternehmen eine KI-Anwendung einsetzen werden. Sie sollen die Produktivität steigern und Instandhaltung planbarer gestalten. Die ethische Dimension von KI bleibt bisher oftmals unterbelichtet. Dabei zeigt sich jedoch, dass KI ohne menschliche Intelligenz (noch) nicht möglich ist.


 (Bild: ©Wenjie Dong/istockphoto.com)

Bild: ©Wenjie Dong/istockphoto.com

Der Branchenverband Bitkom hat zur diesjährigen Hannover Messe 555 Unternehmen mit über 100 Mitarbeitern befragt und festgestellt, dass bisher nur zwölf Prozent der deutschen Industrieunternehmen bereits heute Künstliche Intelligenz (KI) im Zusammenhang mit Industrie 4.0 nutzen. Die Erwartungen an KI sind aber so groß, dass der Einsatz nun wohl exponentiell zunehmen dürfte. Vor allem erwarten die Industrieunternehmen, ihre Produktivität zu steigern, Vorausschauende Wartung und Instandhaltung zu verbessern sowie eine Optimierung ihrer Produktions- und Fertigungsprozesse. Die Befragten gaben zudem an, dass sie 2019 rund fünf Prozent ihres Umsatzes in die Digitalisierung investieren wollen. Die Hoffnungen richten sich auf die Realisierung von Smart Factories, in denen autonome Roboter mit Menschen zusammenarbeiten, dabei niemals müde werden und sogar die Fehler ihrer menschlichen Kollegen rechtzeitig erkennen und für Korrekturen sorgen. Wie im Auto von morgen soll KI in Robotern zusammen mit einer Unzahl von Sensorgen und Aktoren für eine autonome Aktion und Interaktion zwischen Maschinen und zwischen Menschen und Maschinen sorgen. Um dieses Ziel zu erreichen, müssen solche Systeme in Echtzeit große Datenmengen verarbeiten, Muster erkennen, Handlungsoptionen ableiten und umsetzen. Sie müssen also ähnlich wie KI heute schon in Wissenschaft, Medizin, Marketing und selbst für Juristen, zu vorgegebenen oder vorgefundenen oder gerade entstehenden Problemen Lösungen finden. Aber ist das, was in einer Smart Factory mit autonomen und KI-basierten Robotern heute bereits möglich ist, schon künstliche Intelligenz? Oder führt der Begriff in die Irre, wenn lediglich große Datenmengen mit immer leistungsfähigeren Rechnern ausgewertet werden?

Die aktuell verfügbaren KI-Anwendungen sind  trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. (Bild: ©ipopba/istockphoto.com)

Die aktuell verfügbaren KI-Anwendungen sind trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. (Bild: ©ipopba/istockphoto.com)

Was ist künstliche Intelligenz?

Künstliche Intelligenz orientiert sich am menschlichen Intelligenzbegriff und versucht, die Erkenntnis- und Entscheidungsfähigkeit des Menschen zu imitieren. Schon heute gelingt es zumindest, KI-Systeme intelligent erscheinen zu lassen. Sie sind in der Lage, große Datenmengen in kurzer Zeit mit von Menschen geschriebenen Algorithmen auf Muster hin zu analysieren. Algorithmen kommt hierbei eine Schlüsselfunktion zu. Darin sind Anweisungen definiert, um ein Problem systematisch zu lösen. Wie ein Bauplan oder eine Gebrauchsanweisung verfolgt der Algorithmus diesen einen und vorgegebenen Weg und führt zu einem eindeutigen Ergebnis. Um die Leistungsfähigkeit von KI zu steigern, entwickelten Neurowissenschaftler und Informatiker künstliche Neuronale Netze (KNN), die sich am biologischen Vorbild der Vernetzung von Neuronen im Gehirn orientieren. KNN sind in der Lage, sich jederzeit durch neue Informationen, die sie bei Lernprozessen ähnlich wie das Gehirn verarbeiten, neu zu vernetzen oder alte Verbindungen höher oder geringer zu gewichten oder vollständig aufzulösen. Durch die KNN sind auch KI-Algorithmen heute fähig, bei ihrer Anwendung zu ‚lernen‘ – sie können sich also selbständig weiterentwickeln. Dieser Prozess wird als Machine oder Deep Learning bezeichnet. Was der Mensch als Erkenntnis speichert, jederzeit erinnern und wieder anwenden kann, bedeutet bei den Maschinen, dass sie ihren Algorithmus ‚umschreiben‘, um die ihnen gestellten Aufgaben immer besser lösen zu können.

KI macht das, was man ihr sagt

Die aktuell verfügbaren KI-Anwendungen sind trotz Machine Learning zum Glück noch nicht in der Lage, ihren durch den Algorithmus vorgegebenen Weg zu verlassen. Eine KI, die Experten für die Tätigkeit eines Roboters in einer Fertigungslinie programmiert haben, ist nicht in der Lage, in einer anderen Umegbung zu arbeiten. Wissenschaftler bezeichnen diese als schwache KIs – und träumen von starken KIs. Noch ist es nicht gelungen, eine KI zu programmieren, die die intellektuellen Fähigkeiten des Menschen auch nur annähernd simulieren kann. Eine starke KI müsste in der Lage sein, logisch zu denken, Entscheidungen auch tatsächlich wie ein Mensch zu fällen, also abzuwägen z.B. zwischen zwei gleich schlechten Alternativen. Sie müsste sich planvoll neue Wissensgebiete erschließen und sich systematisch selbst anlernen. Vor allem aber müsste sie in natürlicher Sprache selbständig Ideen formulieren können und alle ihre Kompetenzen auch in ein Wertesystem einordnen und einem höheren oder ferneren Ziel unterordnen können. Kurzum: Sie müsste nach ethischen, moralischen und sozialen Kategorien ihr Verhalten und ihre Entscheidungen verantwortungsvoll selbst steuern. Das bedeutet: Ohne den Faktor Mensch wird es bei aller Dynamik der technologischen Entwicklung in der digitalen Transformation auf absehbare Zeit nicht gehen.

Seiten: 1 2 3Auf einer Seite lesen

Thematik: Allgemein
Ausgabe:
- Anzeige -
- Anzeige -

Das könnte Sie auch Interessieren

Bild: IFW
Bild: IFW
Maschinen fehlerlos einfahren

Maschinen fehlerlos einfahren

Transfer von Wissen zwischen Maschinen für die Überwachung - Bild: IFW Durch die Auswertung von Prozessdaten aus Werkzeugmaschinen können Fehler etwa beim Einfahren früh erkannt werden. Durch die Digitalisierung der Fertigung stehen dafür immer größere Datenmengen zur...

Bild: ITQ GmbH
Bild: ITQ GmbH
Website Relaunch

Website Relaunch

Bild: ITQ GmbH Die ITQ GmbH hat ihre Website vollständig überarbeitet. Interessierte Kunden und Bewerber finden mit wenigen Klicks alle Informationen zu den Kernkompetenzen Software und Systems Engineering, Mechatronic Consulting sowie Digital Education. Alle Bereiche...