- Anzeige -
- Anzeige -
- Anzeige -
Lesedauer: min
KI-Fachbegriffe verständlich erklärt

Mai 14, 2019 | Allgemein

Die Bundesregierung hat im November 2018 ihr Strategiepapier zur künstlichen Intelligenz verabschiedet. Diese im Grundsatz richtige und wichtige Initialzündung bietet viele wichtige Inhalte, erfordert jedoch auch eine trennscharfe Betrachtung der einzelnen Begriffe.

Bild: ©phonlamaiphoto/Fotolia.com

Eine Ende 2017 vom Marktforschungsunternehmen Wakefield Research durchgeführte und 2018 von Avanade veröffentlichte Erhebung unter internationalen Führungskräften hat ergeben, dass 98 Prozent der befragten deutschen Unternehmen KI als das Phänomen des Zeitgeistes erachten. Demnach sei zum Beispiel die intelligente Automatisierung (IA), die Abläufe etwa mit humanisierenden Interaktionsformen wie der Verarbeitung natürlicher Sprache verbessert, eher eine Modeerscheinung. Laut der Studie geht ein Drittel der weltweit Befragten davon aus, dass KI im Bereich Manufacturing hilfreich sein kann; in Deutschland sind es hingegen nur 17 Prozent. Die Monetarisierung solcher Technologien erschien für die Befragten zumindest zum damaligen Zeitpunkt keine Option zu sein. Deutschland ist nach wie vor stark im Hardware-Umfeld, sprich im Maschinenbau und der daraus resultierenden physischen Produktion von Gütern. Im Bereich der IT-Innovationen tut sich der Markt hingegen weiterhin schwer. In Hinblick auf die Zukunftsfähigkeit sollte KI jedoch zu einer Kernkompetenz bei begleitenden Prozessen und den eigentlichen Produkten werden.

Eingrenzung von KI

Eine abschließende Definition von KI gibt es dabei nicht. Die Bundesregierung unterscheidet in ihrem KI-Strategiepapier etwa zwischen schwacher und starker KI, wobei die starke Ausprägung die gleichen oder bessere intellektuellen Fähigkeiten wie ein Mensch hat; schwache KI hingegen bedeutet dort, dass konkrete Anwendungsprobleme gelöst werden und die verwendeten Systeme sich selbst verbessern können – auch mit der Nachbildung menschlicher Intelligenz. Im weiteren Verlauf rekurriert das Strategiepapier auf die schwache Variante und adressiert dabei fünf Eckpunkte:

  • • Deduktionssysteme, maschinelles Beweisen: Ableitung (Deduktion) formaler Aussagen aus logischen Ausdrücken, Systeme zum Beweis der Korrektheit von Hardware und Software,
  • • Wissensbasierte Systeme: Methoden zur Modellierung und Erhebung von Wissen, Software zur Simulation menschlichen Expertenwissens und Unterstützung von Experten (ehemals Expertensysteme), zum Teil auch verbunden mit Psychologie und Kognitionswissenschaften, Musteranalyse und Mustererkennung: induktive Analyseverfahren allgemein, insbesondere auch maschinelles Lernen,
  • • Robotik: autonome Steuerung von Robotik-Systemen, also autonome Systeme,
  • • Intelligente multimodale Mensch-Maschine-Interaktion: Analyse und Verstehen von Sprache (in Verbindung mit Linguistik), Bildern, Gestik und anderen Formen menschlicher Interaktion.

KI kondensiert auf die Anwendung

Für betroffene Unternehmen ist ein leicht veränderter Blickwinkel sinnvoll. Vor diesem Kontext gibt es drei zentrale Aspekte, die eine KI beschreiben:

  • • Verstehen: die Bedeutung von Daten begreifen, also Text, Stimme und Bilder,
  • • Schlussfolgern: im Zeitverlauf aus Schlüssen lernen, die auf nicht perfekten Daten basieren,
  • • Interagieren: ’natürliche‘ Nutzerschnittstellen mit Menschen erzeugen.

Somit ist die Entstehung eines Systems gemeint, das Verhaltensweisen ändern kann, ohne explizit für diese Anpassung programmiert zu sein. Die Grundlage dafür bieten gesammelte Daten, Nutzeranalysen und weitere Beobachtungen. Das Ziel sollte stets eine KI sein, die auf den Menschen ausgerichtet ist – im englischen Sprachgebrauch auch ‚human-centered AI‘. Das bedeutet, dass intelligente Anwendungsfälle entstehen, bei denen Mensch und Maschine zusammenarbeiten. Damit ist auch die weit verbreitete Furcht hinfällig, die intelligente Maschine könne den Menschen vollständig ersetzen. Dieser Auffassung folgt übrigens auch die Bundesregierung in ihrem Strategiepapier: Es geht darum, Menschen zu entlasten und ihnen dadurch Freiräume für kreatives Handeln zu eröffnen.

Was ist was – von KI bis ML

Eine wichtige Rolle spielt dafür maschinelles Lernen (auch Machine Learning, kurz ML), einer der streng von KI abzugrenzenden Begriffe. Dazu muss zunächst festgehalten werden: Maschinen können nicht alles, aber einiges besser und schneller als Menschen. Die richtigen Fälle zu identifizieren und zu nutzen, ist daher ein wichtiger Schritt. Denn einmal trainierte Maschinen können im Team mit Menschen mehr erreichen als jeder für sich allein. Hier folgt der Übergang zum ML, einem Zweig der Informatik, der sowohl explizit programmierte Algorithmen für das überwachte – Vorhersagen und Klassifizierung – als auch für das nicht überwachte – Clustering und ‚Feature Detection‘ – Lernen beschreibt. Das maschinelle Lernen stammt aus dem Bereich der künstlichen Intelligenz (KI), der darauf abzielt, Computern mit Algorithmen die Möglichkeit zu geben, ohne explizite Programmierung zu lernen. Es ist daher keine spezifische wissenschaftliche Domäne, sondern eine Reihe von Domänen, die viele Ansätze zur Lösung sehr komplexer Probleme bieten. Künstliche Intelligenz und das sogenannte Reinforcement Learning konzentrieren sich hingegen weiterhin auf die Entwicklung von Algorithmen, die sich selbst beibringen können, sich iterativ anzupassen, wenn sie neuen Daten ausgesetzt sind, um ihre definierten Ergebnisse kontinuierlich zu verbessern.

RPA und intelligente Automatisierung

Ein weiterer, häufig wenig trennscharf in die KI-Ursuppe beigemengter Begriff ist die Robotic Process Automation, kurz RPA. Damit ist der Einsatz von Software gemeint, die Aktionen nachahmt, wie sie ein menschlicher Benutzer ausführen würde: Sich hochgradig wiederholende, regelbasierte Prozesse können so automatisiert durchgeführt werden. Damit RPA funktioniert, sind strukturierte Daten notwendig – und auch hier liegt ein zentraler Unterschied zu KI vor, die sich gemäß der obigen Definition ja gerade dadurch auszeichnet, dass sie auch nicht strukturierte Daten verarbeitet. Hier ist nun der Weg zur intelligenten Automatisierung (IA) nur kurz. Im Endeffekt lässt sich IA durch eine virtuelle Belegschaft beschreiben, die sich wiederholende Schritte schneller, genauer und kostengünstiger ausführt, indem sie grundlegende RPA-Maßnahmen in intelligente Automatisierung verwandelt. Die Basis dafür bilden kognitive Dienste und ML sowie virtuelle Agenten – das sind autonome Systeme, die intelligent Informationen bereitstellen, ein Gespräch führen oder Antworten über interaktive Dialoge geben können. Damit lassen sich über IA Aufgaben ausführen, die früher nur Menschen erledigen konnten. Denn im Verbund mit maschinellem Lernen können solche Systeme die Aufgaben des menschlichen Gehirns replizieren, verstehen, Schlüsse daraus ziehen, entscheiden und lernen. ‚Erweiterte KI‘ unterstützt und erweitert also durch maschinelles Lernen die Fähigkeiten der Mitarbeiter.

Auf zum Erfolg mit KI

Mit den bisher eingesetzten Technologien können Unternehmen nur noch schwer neue Produktivitätslevel erreichen – und genau darum geht es bei der Digitalisierung. Dementsprechend finden sich KI-Anwendungsfälle häufig in den zentralen Diensten eines Unternehmens, etwa der IT-Abteilung, im Kundenservice oder im kaufmännischen Bereich. So hat Avanade etwa für ein großes Energie-Unternehmen durch ein RPA-Projekt eine 30-prozentige Produktivitätssteigerung erreicht, indem Prozesse innerhalb der Finanzabteilung automatisiert wurden. Allerdings müssen Unternehmen für den gewinnbringenden Einsatz mit RPA und AI ihre Hausaufgaben erledigen: realistische Projekte entwickeln, zielführende Prozesse einführen, Kosten dem erhofften Nutzen gegenüberstellen. In der Regel empfiehlt es sich Projekte umzusetzen, deren Return on Investment nach mindestens 15 Monaten gegeben ist. Darüber hinaus kann KI das Kernprodukt beeinflussen, bis hin zu geänderten Geschäftsmodellen. So können sowohl Nutzer- als auch KI-Vorgaben in die Produkte einfließen. Unternehmen gäben dabei Anforderungen vor, Algorithmen könnten diverse Designs erstellen und Kunden schließlich ihr favorisiertes Produkt auswählen. Mit 3D-Druck ist so ein Szenario näher an der Realität, als viele ahnen. Grundsätzlich gilt: Um die Vorteile künstlicher Intelligenz zu nutzen, bedarf es einer Reihe von Fähigkeiten und Produktionsmitteln. Dazu zählen sowohl Wissen und Talent als auch Daten und Technologien – ebenso wie eine präzise Sprache. n Intelligent Automation Lead bei der Avanade GmbH.

Autor:
Firma:

News

Weitere Beiträge

Das könnte Sie auch interessieren

KI-Vorreiter führen ihre KI-Initiativen trotz Corona unbeirrt fort

Unternehmen, die beim Thema künstliche Intelligenz (KI) führend sind, zeigen sich von der Corona-Pandemie unbeeindruckt: 78 Prozent der KI-Vorreiter unter den Unternehmen führen ihre KI-Initiativen wie vor der Pandemie fort, 21 Prozent haben deren Umsetzung sogar beschleunigt. Unter den Unternehmen, die KI noch nicht skalierbar einsetzen, fahren hingegen 43 Prozent ihrer Investitionen zurück und 16 Prozent haben ihre KI-Initiativen eingestellt. In Deutschland haben 44 Prozent der Unternehmen keine Änderungen vorgenommen, 8 Prozent die Geschwindigkeit erhöht und 19 Prozent ihre Initiativen aufgrund der unsicheren Lage eingestellt. Weiterhin verzeichnen Unternehmen mit skalierbaren KI-Anwendungen messbare Erfolge bei der Absatzsteigerung und der Reduzierung von Sicherheitsrisiken und Kundenbeschwerden. Zu diesen und weiteren Ergebnissen kommt die Studie ‚The AI Powered Enterprise: Unlocking the potential of AI at scale‘, für die 950 Unternehmen aus elf Ländern und elf Branchen befragt wurden.

mehr lesen

KI übernimmt Arbeit von Software-Ingenieuren

Für selbstadaptive Software gibt es heute unzählige Anwendungsmöglichkeiten. Doch die Entwicklung der Systeme stellt Software-Ingenieure vor neue Herausforderungen. Wissenschaftler vom Softwaretechnik-Institut Paluno an der Universität Duisburg-Essen (UDE) haben jetzt vielversprechende Ergebnisse mit neuartigen Verfahren der künstlichen Intelligenz (KI) erzielt, die den Entwicklungsprozess selbstadaptiver Systeme automatisieren.

mehr lesen

Wie wird künstliche Intelligenz zum Standardwerkzeug für den Mittelstand?

Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU möchte zusammen mit den produzierenden Unternehmen des Mittelstands die entscheidende Barriere für die Anwendung künstlicher Intelligenz überwinden: Die Köpfe sind überzeugt, aber die Umgestaltung der Produktionsanlagen und -prozesse in den Fabriken stockt. Deshalb arbeiten die Forscherinnen und Forscher an einem systematischen Leitfaden, mit dem KI zum Standardwerkzeug werden soll, das bessere Produkte mit geringerem Ressourceneinsatz ermöglicht. Erste Ergebnisse sind vielversprechend.

mehr lesen

Leistungsstarkes KI-System am KIT installiert

Als ein Werkzeug der Spitzenforschung ist künstliche Intelligenz (KI) heute unentbehrlich. Für einen erfolgreichen Einsatz – ob in der Energieforschung oder bei der Entwicklung neuer Materialien – wird dabei neben den Algorithmen zunehmend auch spezialisierte Hardware zu einem immer wichtigeren Faktor. Das Karlsruher Institut für Technologie (KIT) hat nun als erster Standort in Europa das neuartige KI-System NVIDIA DGX A100 in Betrieb genommen. Angeschafft wurde es aus Mitteln der Helmholtz Artificial Intelligence Cooperation Unit (HAICU).

mehr lesen

Machine Learning einfach gemacht

Seit einigen Jahren schon werden die Fantasien der Ingenieure und Anlagenbauer beflügelt durch die Möglichkeiten von KI- und Machine-Learning-Algorithmen. Klingt zwar zunächst sehr kompliziert, bietet aber konkrete Vorteile für die smarte Fabrik. Maschinen und Anlagen bzw. Produktionsprozesse erzeugen kontinuierlich Daten. Erfolgreich werden zukünftig Unternehmen sein, denen es gelingt, Mehrwert aus diesen Daten zu generieren.

mehr lesen

Die vernetze Fabrik für die Zukunft

Krisen decken Schwachstellen auf. In der Corona-Pandemie zeigt sich der Wert der vernetzten Produktion und Logistik. Das Internet der Dinge (Internet of Things, kurz IoT) hilft der Industrie, auf Ausfälle flexibler als bisher zu reagieren, denn in Echtzeit lassen sich Auslastung und Zustand jeder einzelnen Maschine verfolgen, und es herrscht Transparenz über die Lieferkette. Die Bosch-Gruppe, eines der weltweit führenden Technologie- und Dienstleistungsunternehmen, hat damit positive Erfahrungen gemacht.

mehr lesen

Schutz der Privatsphäre und KI in Kommunikationssystemen

Alle zwei Jahre vergeben der VDE, die Deutsche Telekom sowie die Städte Friedrichsdorf und Gelnhausen den mit 10.000 Euro dotierten Johann-Philipp-Reis-Preis an einen Nachwuchswissenschaftler. Dieses Jahr geht er an Prof. Dr.-Ing. Delphine Reinhardt von der Georg-August-Universität Göttingen und an Dr.-Ing. Jakob Hoydis von den Nokia Bell Labs in Nozay, Frankreich. Die beiden Preisträger teilen sich die Auszeichnung und damit das Preisgeld.

Infor bringt Infor Coleman AI auf den Markt

Infor, Anbieter von branchenspezifischer Business-Software für die Cloud, hat bekanntgegeben, dass die Plattform Infor Coleman AI für Embedded-Machine-Learning-Modelle ab sofort verfügbar ist. Sie bietet die Geschwindigkeit, Wiederholbarkeit und Personalisierung, die Unternehmen benötigen, um KI vollständig zu operationalisieren.